01 February 2020
UK Research and Innovation (UKRI) have contributed £10 million to support the £41 million Energy Superhub Oxford (ESO) project
ESO will showcase cutting-edge electric vehicle charging, energy storage systems, and low carbon heating, plus smart energy management technologies to support Oxford City Council’s journey to zero carbon. ESO aims to deliver savings of 20,000 tonnes of CO2 per year by 2021, rising to 44,000 tonnes per year by 2032.
In 2020 the Energy Superhub Oxford consortium are launching the world’s largest hybrid lithium ion / vanadium redox flow machine energy storage system (50 MW) and a network of ultra-rapid and fast charging stations connected directly to the extra-high voltage transmission system. Money-saving ground source heat pumps will also be installed in 300 buildings and homes.
As part of the project, the City of Oxford are pioneering a model of rapid transport and heat electrification that can be rolled out to other cities to reduce air pollution and support government plans to decarbonise the UK economy. The University of Oxford, together with EnergyREV – a UK university-led energy revolution research consortium – and the Energy Systems Catapult “Energy Revolution Integration Service” (ERIS) will study the project to produce reports and recommendations that will support the rollout of similar initiatives elsewhere in the UK, and around the world.
The project aims to reduce emissions and improve public health by accelerating a switch to electric vehicles and decarbonising heating for homes and buildings. Smart software will manage the energy storage, electric vehicle charging and heat pumps, to reduce strain on the grid and allow it to accommodate more renewables. ESO will demonstrate an ecosystem of practical decarbonisation approaches by applying machine learning and grid scale energy storage infrastructure to bypass network constraints.
Councillor Tom Hayes, Executive Board Member for a Safer and Greener Environment said:
“The City Council is working towards a Zero Carbon Oxford to tackle dangerous climate change in the time available to us to save the planet. Uniquely, this £41m once-in-a-generation downpayment on Oxford will move the Council closer to achieving this vision. Leading businesses are investing in Oxford because they recognise that we’re already trialling new technologies exactly like Energy Superhub Oxford. Today’s announcement allows us as a city to embrace our technological future.”
“This exciting project will enable the City Council to install more electric vehicle charging points of the kind that charge vehicles quickest. It gives Black Cab drivers additional support to shift from 100% diesel today to 100% electric in the next few years. It enables the council to move our own vehicles to electric on a faster timescale and, crucially, to install heat energy across homes to tackle fuel poverty.”
Habitat Energy will develop the optimisation platform for the project which will control the energy storage, importing and exporting power to help balance the grid second by second, giving it the flexibility to bring more wind and solar onto the system. The optimisation platform will also manage electric vehicles and heat pumps, maximising their use of cheap energy and using them to provide additional flexibility to the electricity network.
From 2020 to 2021 Kensa Contracting will design and install ground source heat pump systems in 300 homes using an innovative shared ground loop system that sees each household with an individual Kensa Heat Pump connected to a larger ambient temperature district heating network. Running costs for this type of system compare well to mains gas boilers, with half the carbon footprint. The optimisation platform is expected to cut heating bills and carbon emissions by a further 25%, developing a tailored plan for each home based on its heat profile and taking advantage of time-of-use tariffs to shift heating demand away from expensive, high carbon times and maximise the use of low carbon, cheap, off-peak power.
The project will see Pivot Power install the world’s largest commercial hybrid energy storage system. It will combine the high-power capabilities of a lithium-ion battery with 2 MW / 5 MWh of the heavy cycling, non-degrading characteristics of vanadium redox flow machines, supplied by UK energy storage experts, redT energy. Utilising both lithium-ion batteries and vanadium redox flow machines together in one hybrid system, combines the strengths of the two technologies to meet the complex demands of multiple applications while extending the lifespan of the lithium-ion battery.
The use of redT’s flow machine technology, Habitat’s pioneering real-time energy optimisation and trading capacity incorporating degradation management for the lithium-ion element, and the Kensa shared loop ground source heat pump technologies will make the Energy Superhub Oxford project one of the largest examples of real-world Smart Local Energy Systems across energy vectors.
The University of Oxford will evaluate the performance of the energy storage system, and assess the environmental, social and economic impacts of the project on local stakeholders. This will lead to insights into governance and reproducibility, as well as validated performance models of large-scale battery systems.
Government plans to cut carbon emissions and improve air quality could see millions of electric vehicles and heat pumps in use by 2030, and the project will show how this can be achieved while maintaining a stable, efficient, cost-effective electricity network.
Energy and Clean Growth Minister, Claire Perry said: “Oxford is set for a smart energy overhaul, with these projects aiming to meet the city’s energy needs through greener, low carbon technologies. Backed by government funding, this has the potential to completely change the way people go about their daily lives – from going to work on an electric bus to using the heat rising from the earth to heat your home without gas.
“These projects are an example of our modern Industrial Strategy in action, helping companies and consumers seize the opportunity of the global shift to a cleaner, greener, more flexible energy system.”
Rob Saunders, Deputy Challenge Director, Prospering from the Energy Revolution, UK Research and Innovation added: “We all need energy systems that are cheaper, cleaner and consumer-friendly. We have a great opportunity with the Energy Superhub to show just how innovation can deliver this energy ambition for the future. Supported by the Industrial Strategy Challenge Fund, this project can drive investment, create high-quality jobs and grow companies with export potential.”
Energy Superhub Oxford (ESO) will be a global model for cities to cut carbon and improve air quality